

WEBADE 4.3.0

User’s Guide

Client: BC Provincial Government

Date: July 24, 2012

Revision: 2.1

Vivid Solutions Inc.

Suite #1A, 2328 Government St.

Victoria, BC V8T 5G5

Phone: (250) 385-6040

Fax: (250) 385-6046

Website: www.vividsolutions.com

http://www.vividsolutions.com/

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 2 of 36

Document Change Control

REVISION NUMBER DATE OF ISSUE AUTHOR(S) DESCRIPTION

1 May 16, 2005 Jason Ross Original draft

1.1 June 2, 2005 Jason Ross Revised much of the text
and layout.

1.2 August 11, 2005 Jason Ross Added a section on
additional user information
available to the developer
(Section 2.2.1)

1.3 November 4, 2005 Jason Ross Updated for WebADE 4.1

1.4 February 20, 2006 Jason Ross Added documentation.for
getAuthorizedUser()
methods.

1.5 March 23, 2006 Jason Ross Fixed getConnectionByAction
sample code that was
syntactically incorrect.

1.6 July 20, 2006 Jason Ross Updated the user searching
documentation to reflect the
newer API, and removed
references in the
documentation to the
deprecated User object.

1.7 September 25, 2006 Jason Ross Updated the documentation
to reflect WebADE 4.1.8 API.

2 March 31, 2008 Jason Ross Updated document for
WebADE 4.2.0

2.1 July 24, 2012 Andrew Wilkinson Updated document for
WebADE 4.3.0

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 3 of 36

Table of Contents

1. INTRODUCTION TO THE WEBADE .. 5

1.1 OVERVIEW ... 5

1.2 PREREQUISITES ... 6

2. THE WEBADE APPLICATION SINGLETON ... 7

2.1 TESTING THE SAMPLES OUTSIDE A WEB APPLICATION .. 7

2.2 USER CREDENTIALS .. 8

2.3 USER AUTHORIZATIONS ... 8

2.3.1 SECURED-BY-ORGANIZATION VS NON-SECURED-BY-ORGANIZATION 9

2.3.2 RETRIEVING OTHER USERS’ PERMISSIONS .. 10

2.3.3 OTHER ATTRIBUTES ... 10

2.4 USER INFORMATION .. 11

2.4.1 RETRIEVING OTHER USER’S INFORMATION ... 11

2.4.2 WEBADEUSERINFO ATTRIBUTES .. 11

2.4.3 ADDITIONAL USER TYPE-SPECIFIC ATTRIBUTES .. 12

2.4.4 USING THE WEBADEUSERINFO GETATTRIBUTE() METHOD .. 13

2.4.5 RETRIEVING A LIST OF USERS BY ROLE/ORGANIZATION .. 14

2.5 RETRIEVING DATABASE CONNECTIONS SECURELY ... 15

2.5.1 RETRIEVING A DATABASE CONNECTION WITHOUT A USER-CONTEXT 15

2.6 PREFERENCES ... 16

2.6.1 THE WEBADEPREFERENCES INTERFACE ... 16

2.6.2 THE WEBADEPREFERENCESET INTERFACE .. 17

2.6.3 THE WEBADEPREFERENCE INTERFACE .. 17

2.6.4 THE MULTIVALUEWEBADEPREFERENCE INTERFACE ... 17

2.6.5 APPLICATION PREFERENCES .. 18

2.6.6 USER PREFERENCES ... 18

2.6.7 GLOBAL PREFERENCES .. 19

3. WEB APPLICATIONS AND MVC DESIGN ... 20

3.1 WEBADE AND MVC DESIGN .. 20

3.1.1 USING CUSTOM SERVLETCONTEXTLISTENERS .. 21

3.1.2 USING CUSTOM FILTERS .. 21

3.2 STRUTS .. 22

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 4 of 36

3.3 STRUTS AND THE WEBADE .. 22

3.3.1 THE WEBADEACTION CLASS .. 23

3.4 MORE INFORMATION ... 23

4. WEB APPLICATION INITIALIZATION .. 24

4.1 CONFIGURING THE WEBADE .. 24

4.2 WHAT THE WEBADE DOES AT STARTUP ... 24

4.3 ADAM .. 24

5. WEBADE AND MANAGEMENT OF A USER’S SESSION .. 26

5.1 ORGANIZATION SELECTION ... 26

5.1.1 CONFIGURING ORGANIZATION SELECTION FOR AN APPLICATION 26

5.2 USER AGREEMENTS .. 28

6. ADVANCED TOPICS ... 29

6.1 DATABASE CONNECTIONS AND CONNECTION POOLS .. 29

6.2 WEBADE EXTENSIONS .. 29

6.2.1 CREATING A WEBADE EXTENSION ... 29

6.2.2 REGISTERING A WEBADE EXTENSION .. 29

6.3 SEARCHING ... 31

6.3.1 SEARCH OBJECTS AND SEARCH ATTRIBUTES ... 31

6.3.2 ORGANIZATION SEARCHING .. 32

6.3.3 USER SEARCHING .. 33

6.4 MANAGING USER PREFERENCES .. 33

6.5 ALLOWING BCEID USERS TO VIEW AN IDIR USER EMAIL ADDRESS .. 35

7. RELATED DOCUMENTATION AND LINKS .. 36

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 5 of 36

1. INTRODUCTION TO THE WEBADE

The WebADE is a Java-based J2EE application development framework which aids in

delivering common services required by corporate applications. It provides functionality for:

 authorization

 access to user information, such as first and last names and email addresses

 database connection pooling

 logging

 error handling

 pluggable extensions, such as reporting and automated tasks

WebADE provides several advantages to application development, such as presenting

simplified APIs for more complex frameworks and providing a common framework for web

development that is more tailored to the types of applications that are desired by and for

various provincial ministries. Because the WebADE abstracts the actual implementation of

these frameworks, there is also the added benefit of being able to upgrade or even swap

these underlying frameworks without impacting existing WebADE applications. As the

WebADE changes and introduces new functionality, maintaining backwards-compatibility is a

high priority, and sometimes even new functionality (such as improved connection pooling

or application monitoring) can be introduced into existing applications without requiring any

code change at all.

The focus of the WebADE is to provide all of the above benefits to web applications, as

these are the most common multi-user applications today, where access to individual

components of an application are restricted based on a user's authorizations. However, as

most of the core WebADE functionality is not tied to a web environment, it is possible to

create a desktop application that uses the WebADE to manage user authorizations.

Nevertheless, this document will focus on the integration of the WebADE with web

applications, as this is, by far, the primary use of the WebADE.

Finally, it is worthy of note that WebADE 4 introduces several new features, the most

important of which is a distributed user authorization management, using a WebADE-

integrated application called ADAM.

1.1 OVERVIEW

The WebADE is a central part of an application, aiding in authorizing users for

particular application functionality, managing connection pools, and providing a

central access point for extensions that can provide additional services, such as

reporting or automated tasks.

In a web application, the WebADE sits in the middle, intercepting user requests

before they execute business logic, managing database access, restricting a

request's database access to that which is granted to the user executing the request,

and providing other core operations at both application initialization and the

initialization of a user's session.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 6 of 36

WebADE

Authorization
Connection

Pooling
Extensions

WebADE Application

Web Client

User Authentication (IIS, Netegrity)

WebADE

App DB

Directories

(IDir, BCeID, MyID)

The WebADE is comprised of several components. From a developer's point of view,

there are two main pieces, a set of Java libraries and a supporting database table

structure.

The Java libraries use the database to poll for the configuration information of the

application, which includes application initialization settings, connection pool

configurations, and user authorizations.

1.2 PREREQUISITES

The following are assumed to be in place in preparation for the topics discussed in

this guide. Please refer to the WebADE 4 Administrators Guide for more information

on any of these subjects:

 WebADE database table structure, including supporting stored procedures,

packages, and code table data.

 WebADE application preferences required for internal WebADE use (Such as

user provider connection information for IDIR, BCeID and MYID) should be

properly set in the WebADE database.

 A database user that has permissions to execute all WebADE stored

procedures and packages.

 A WebADE connection jar with the database JDBC URL, user credentials for

the above-mentioned user, and any optional connection pool settings that are

required for the WebADE connection pool that will be created from these

settings.

 A database schema for your application.

 Database users for each WebADE role that requires access to your database.

 The WebADE Java libraries and WebADE connection jar must be included in

your application’s classpath.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 7 of 36

2. THE WEBADE APPLICATION SINGLETON

The main WebADE class is the Application singleton. This singleton contains all methods for

user authorization calls, retrieval of connections from the application's connection pools, and

provides access to any WebADE extensions configured for your application.

As the core WebADE classes are not dependant on any J2EE code, you can load the WebADE

without the need of a web application container, such as OC4J or JRun. This allows you to

test the WebADE configuration of your application before deploying your web application.

You can also use this to perform unit tests of your business logic using a unit testing API

like JUnit.

2.1 TESTING THE SAMPLES OUTSIDE A WEB APPLICATION

All of the examples in this chapter are written assuming they will be run in a web

container. As the HttpRequestUtils methods you will see later in this chapter will not

work without proper ServletContext and HttpServletRequest instances, you can use

the following code examples to create application and user-related objects outside of

a web application context for testing purposes.

To create an instance of the Application singleton outside of a web container, run the

following code (replacing “APP” with the WebADE application acronym of your

WebADE application):

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.WebADEApplicationUtils;

...

Application app = WebADEApplicationUtils.createApplication(“APP”);

NOTE: You do not need to use this code inside an actual web application, as this will

be created automatically on application initialization.

Once you have the application singleton created, you can create instances of the

WebADEPermissions and WebADEUserInfo objects for a target user by writing the

following code (replacing “IDIR” and “MYUSER” with the source directory and account

name of the user you wish to use in your code):

NOTE: Before WebADE can lookup your test user, you will need to have configured

the WebADE to use the appropriate user provider to recognize and connect to the

target source directory. See the WebADE 4 Administrator’s Guide for instructions on

how to do this.

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.WebADEApplicationUtils;

import ca.bc.gov.webade.user.UserCredentials;

import ca.bc.gov.webade.user.WebADEUserInfo;

import ca.bc.gov.webade.user.WebADEUserPermissions;

...

Application app = WebADEApplicationUtils.createApplication(“APP”);

UserCredentials creds = new UserCredentials();

creds.setSourceDirectory(“IDIR”);

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 8 of 36

creds.setAccountName(“MYUSER”);

WebADEUserInfo info = app.getWebADEUserInfo(creds);

WebADEUserPermissions auths = app.getWebADEUserPermissions(creds);

2.2 USER CREDENTIALS

Since the release of the WebADE 4.1, all users are identified by a UserCredentials

object. This UserCredentials object contains the following attributes:

ATTRIBUTE METHOD DESCRIPTION

getUserGuid The user’s 32-character Hex-value GUID.

getAccountName The user’s unique account name.

getSourceDirectory The source directory containing the user’s account record.

getUserTypeCode The user’s WebADE User Type Code (GOV, BUP, UIN, or VIN).

A user’s UserCredentials object can be used to lookup the user’s WebADE

permissions, by calling the Application singleton’s getWebADEUserPermissions()

method, and user information, by calling the Application singleton’s

getWebADEUserInfo() method. To load a user, the configured user provider must

support the userTypeCode/sourceDirectory of the user. If an attempt is made to load

or search for a user and an unsupported userTypeCode/sourceDirectory is specified,

a WebADEUserProviderException will be thrown. If the userTypeCode and

sourceDirectory are not specified, the user provider will only attempt to look up the

types of users it supports.

NOTE: It is not necessary to know all of a user’s credentials, in order to locate their

permissions or information. It should be sufficient to supply one of the user’s GUID

or account name (Preferably the user’s GUID) and one of the user’s source directory

or user type code. When the WebADE locates the user’s permissions or information,

any unspecified credentials attributes will be set by the WebADE. That said, is it best

to supply as much of the user’s credentials as possible, as it is possible some of

these values could have changed since you last acquired them.

2.3 USER AUTHORIZATIONS

The main purpose of the WebADE is to control a user's access to an application's

actions. An action is any self-contained segment of code that can be called by a

user. Examples of actions, in plain English, would be “Edit a User's Account” or

“View the ABC Report”. From a web application perspective, an action is usually (But

not necessarily) all of the business processing that results from a user sending a

request to the server, such as by clicking on a link or submitting an HTML form.

Each action in an application can be assigned to one or more roles. A role can be

viewed as a defined access to an application that contains a collection of actions that

are all related from a business perspective. Examples of roles would be “Application

User” or “Application Administrator”.

By defining these roles in the application, we now have reasonably-sized sections of

application code that we can allocate to users, authorizing these users access to the

application in the assigned role.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 9 of 36

On top of simply granting a role to a user, it is possible in WebADE 4 to grant on

behalf of an organization. See the Organization Selection section in this document

and the ADAM User’s Guide for more information about organization-based role

authorization.

Here is a diagram illustrating the WebADE's view of authorizations.

WebADE uses these authorizations to restrict user access at two points: 1) At the

point of request, before a business code is executed and 2) At any time that access

is required to the application's database.

When a user submits a request, but before any business logic is performed, WebADE

should be called to verify that the user can perform the WebADE action associated

with that logic. This can be done with code similar to the following (replacing

“myActionName” with the name of the target action):

import ca.bc.gov.webade.Action;

import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.WebADECurrentUserPermissions;

...

HttpServletRequest req = ...;

WebADECurrentUserPermissions user = HttpRequestUtils.getCurrentUserPermissions(req);

boolean canPerform = user.canPerformAction(new Action(“myActionName”));

if (canPerform) {

 ...

}

2.3.1 SECURED-BY-ORGANIZATION VS NON-SECURED-BY-ORGANIZATION

User permissions come in two types, secured-by-organization and non-secured-

by-organization. A user's WebADE role-permission is secured-by-organization if,

when the associated Authorization Profile is granted in ADAM to the user, it is

granted on behalf of an organization. This means the user only is permitted to

perform that role in the target WebADE application while acting for that

organization. If an application is using secure-by-organization permissions, it is

recommended that the application turn on User Organization Selection to allow

WebADE to restrict a user's secured-by-organization permissions in a session to

only those for the organization the user selects for that session. See the section

User Organization Selection for more information.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 10 of 36

If a user is granted a WebADE role-permission through an ADAM Authorization

Profile that is not secured-by-organization, the user will have access to that role

in every web session they have for a WebADE web application. If User

Organization Selection is turned on, the user will still have access to this role, no

matter what organization they select to work on behalf of for the web session.

To get the list of user roles that are non-secured-by-organization, call the

getNonSecuredByOrganizationRoles() method user's WebADEUserPermissions

object. For example:

WebADECurrentUserPermissions perms = HttpRequestUtils.getCurrentUserPermissions(req);

Role[] userRoles = perms.getRolesNotSecuredByOrganization();

2.3.2 RETRIEVING OTHER USERS’ PERMISSIONS

You may also request any WebADE user’s permissions by retrieving the

Application singleton from the ServletContext, and using code similar to the

following:

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.GUID;

import ca.bc.gov.webade.user.UserCredentials ;

import ca.bc.gov.webade.user.UserTypeCode;

import ca.bc.gov.webade.user.WebADEUserPermissions;

...

ServletContext ctx = ...;

Application app = HttpRequestUtils.getApplication(ctx);

UserCredentials creds = new UserCredentials();

creds.setUserTypeCode(UserTypeCode.GOVERNMENT);

creds.setUserGuid(new GUID(“EC98010245675A6E0DAE484BE047C8A3”));

WebADEUserPermissions auths = app.getWebADEUserPermissions(creds);

2.3.3 OTHER ATTRIBUTES

The WebADECurrentUserPermissions object returned from the

HttpRequestUtils.getCurrentUserPermissions() method in the above example is

an extended version of the WebADEUserPermissions object in the example

above. These permissions objects contain a certain amount of additional

information about the user, if it is available to the WebADE. This information is

available through the named methods for the following attributes:

ATTRIBUTE METHOD DESCRIPTION

getUserCredentials The user’s identifying credentials, including account name, GUID, source
directory, and user type code.

getOrganizations The set of organizations the user has application authorizations given on
behalf of for the WebADE application.

getRoles The WebADE application roles the user is authorized for.

isUserAuthenticated (Current user only) A flag indicating whether the user has accessed the
application through some form of authentication.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 11 of 36

IsWebADEUser (Current user only) A flag indicating whether the current user has been
located in the WebADE system. If the user has been authenticated but cannot
be located within the WebADE itself, this value will be false.

2.4 USER INFORMATION

Since the release of the WebADE 4.1, user information has been separated from the

user’s WebADE permissions for a specific application. The current user’s information

can be retrieved with code similar to the following:

import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.WebADEUserInfo;

...

HttpServletRequest req = ...;

WebADEUserInfo info = HttpRequestUtils.getCurrentUserInfo(req);

2.4.1 RETRIEVING OTHER USER’S INFORMATION

You may also request any user’s information by retrieving the Application

singleton from the ServletContext, and using code similar to the following:

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.GUID;

import ca.bc.gov.webade.user.UserCredentials ;

import ca.bc.gov.webade.user.UserTypeCode;

import ca.bc.gov.webade.user.WebADEUserInfo;

...

ServletContext ctx = ...;

Application app = HttpRequestUtils.getApplication(ctx);

UserCredentials creds = new UserCredentials();

creds.setUserTypeCode(UserTypeCode.GOVERNMENT);

creds.setUserGuid(new GUID(“EC98010245675A6E0DAE484BE047C8A3”));

WebADEUserInfo info = app.getWebADEUserInfo(creds);

NOTE: If a call for a user’s information is made to the WebADE during the

processing of another user’s HTTP request, it is possible that the requesting user

does not have the permissions to view the target user’s information. Developers

should take this into account, checking the returned WebADEUserInfo object’s

isVisible() flag before continuing processing of the HTTP request. If this flag is

false, the requesting user is not permitted to view this user’s information, and

the developer should handle this condition properly.

2.4.2 WEBADEUSERINFO ATTRIBUTES

The WebADEUserInfo object has the following attributes:

ATTRIBUTE METHOD DESCRIPTION

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 12 of 36

getUserCredentials The user’s identifying credentials, including account name, GUID, source
directory, and user type code.

getDisplayName The display name for the user, if available.

getFirstName The first name of the user, if available.

getLastName The last name of the user, if available.

getMiddleInitial The middle initial of the user’s name, if available.

getEmailAddress The email address of the user, if available.

getPhoneNumber The phone number of the user, if available.

getExpiryDate The date the user’s account will expire.

isVisible A flag indicating whether the requesting user has the ability to view the user’s
personal information.

2.4.3 ADDITIONAL USER TYPE-SPECIFIC ATTRIBUTES

In additional to the common set of attributes listed above, each WebADE user

type can have additional attributes, specific to that particular user type. To view

these user type-specific attributes, you must cast the WebADEUserInfo object to

the appropriate subclass. Here is an example:

import ca.bc.gov.webade.user.BusinessPartnerUserInfo;

import ca.bc.gov.webade.user.GovernmentUserInfo;

import ca.bc.gov.webade.user.IndividualUserInfo;

import ca.bc.gov.webade.user.WebADEUserInfo;

...

WebADEUserInfo info = ...;

if (info instanceof GovernmentUserInfo) {

 GovernmentUserInfo govUser = (GovernmentUserInfo)info;

} else if (info instanceof BusinessPartnerUserInfo) {

 BusinessPartnerUserInfo busPartner = (BusinessPartnerUserInfo)info;

} else if (info instanceof IndividualUserInfo) {

 IndividualUserInfo individual = (IndividualUserInfo)info;

}

GOVERNMENTUSERINFO

GovernmentUserInfo has the following additional attributes:

ATTRIBUTE METHOD DESCRIPTION

getAccountType The user's BC Gov Account type.

getEmployeeId The user's employee Id.

isEmployee A flag indicating if the user is a government employee.

BUSINESSPARTNERUSERINFO

BusinessPartnerUserInfo has the following additional attributes:

ATTRIBUTE METHOD DESCRIPTION

getBusinessGUID The user's associated business' GUID.

getBusinessLegalName The user's associated business' legal name.

getBusinessActivationCode The user's associated business' activation code.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 13 of 36

INDIVIDUALUSERINFO

IndividualUserInfo does not currently have any additional attributes.

2.4.4 USING THE WEBADEUSERINFO GETATTRIBUTE() METHOD

The WebADEUserInfo object has a generic way of fetching a user's attributes.

This generic getAttribute() method allows User Providers to support new

attributes without having to wait for a WebADE release to add the getter and

setter methods to the WebADEUserInfo interface. This loosens the tight-coupling

between WebADE and CAP web service releases.

To obtain a user attribute through this generic interface, call the getAttribute()

method, passing in the reserved unique string for the target attribute. The

WebADE supports the following standard attributes:

webade.user.credentials

webade.user.display.name

webade.user.last.name

webade.user.first.name

webade.user.middle.initial

webade.user.email.address

webade.user.phone.number

webade.user.expiry.date

webade.user.is.visible

For Government users, WebADE supports the following additional standard

attributes:

government.user.account.type

government.user.employee.id

For Business Partner users, WebADE supports the following additional standard

attributes:

business.user.business.GUID

business.user.business.legal.name

business.user.business.activation.code

Here are a couple of examples using the getAttribute() method:

WebADEUserInfo info = HttpRequestUtils.getCurrentUserInfo(request);

UserCredentials creds = (UserCredentials)info.getAttributeValue(WebADEUserInfo.USER_CREDENTIALS);

String accountType = (String)info.getAttributeValue(GovernmentUserInfo.ACCOUNT_TYPE);

Date expiryDate = (Date)info.getAttributeValue(WebADEUserInfo.EXPIRY_DATE);

RELATED METHODS

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 14 of 36

The WebADEUserInfo object has two other new methods related to the

getAttribute() method; getAttributeNames() and hasAttribute().

The getAttributeNames() will return the array of attribute names for the complete

list of attributes the user object contains. Here is an example using this method:

WebADEUserInfo info = HttpRequestUtils.getCurrentUserInfo(request);

String[] names = info.getAttributeNames();

for (int i = 0; i < names.length; i++) {

 String currentName = names[i];

 System.out.println("User attribute '" + currentName + "' = '" +

user.getAttributeValue(currentName) + "'");

}

The hasAttribute() method returns whether the user object supports the attribute

represented by the attribute name string passed in. Here are a couple of

examples using this method:

DefaultBusinessPartnerUserInfo user = new DefaultBusinessPartnerUserInfo();

assert(user.hasAttribute(WebADEUserInfo.USER_CREDENTIALS));

assert(user.hasAttribute(WebADEUserInfo.DISPLAY_NAME));

assert(user.hasAttribute(WebADEUserInfo.LAST_NAME));

assert(user.hasAttribute(WebADEUserInfo.FIRST_NAME));

assert(user.hasAttribute(WebADEUserInfo.MIDDLE_INITIAL));

assert(user.hasAttribute(WebADEUserInfo.EMAIL_ADDRESS));

assert(user.hasAttribute(WebADEUserInfo.PHONE_NUMBER));

assert(user.hasAttribute(WebADEUserInfo.EXPIRY_DATE));

assert(user.hasAttribute(WebADEUserInfo.IS_VISIBLE));

assert(!user.hasAttribute(GovernmentUserInfo.ACCOUNT_TYPE));

assert(!user.hasAttribute(GovernmentUserInfo.EMPLOYEE_ID));

assert(user.hasAttribute(BusinessPartnerUserInfo.BUSINESS_ACTIVATION_CODE));

assert(user.hasAttribute(BusinessPartnerUserInfo.BUSINESS_GUID));

assert(user.hasAttribute(BusinessPartnerUserInfo.BUSINESS_LEGAL_NAME));

2.4.5 RETRIEVING A LIST OF USERS BY ROLE/ORGANIZATION

WebADE (since 4.1.4) allows a developer to query for the list of users granted

access to the current application for a given Role/Organization combination. If

only a role is specified, WebADE returns all Users granted access to that Role

regardless of any Organization restriction placed on the authorization. If only an

Organization is specified, WebADE returns all users with authorizations to work

on behalf of the given organization for the given application, regardless of the

Role. Examples are shown below:

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.Role;

import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.UserCredentials;

...

HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(req);

Role role = app.getRoles().getRole(“myRoleName”);

Organization org = app.getOrganizationById(00000);

UserCredentials[] creds;

creds = app.getAuthorizedUsers(role);

creds = app.getAuthorizedUsers(org);

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 15 of 36

creds = app.getAuthorizedUsers(role, org);

NOTE: The getAuthorizedUsers() methods will throw an

IndeterminateAuthorizationsException when the given Role/Organization

combination is granted to a rule (Example: “All IDIR Users”) or an Active

Directory group. This is due to the inability to traverse these rules and groups to

determine the set of users within. If this does not affect your application, you

can prevent this exception from being thrown by calling the appropriate

overloaded method that has an additional Boolean flag called

“ignoreIndeterminateAuthorizationsErrors” with a value of true. Alternatively, you

can call pre-emptively determine whether the call will throw this exception by

calling the Application class method “hasIndeterminateAuthorizations()” with the

same Role/Organization combination.

2.5 RETRIEVING DATABASE CONNECTIONS SECURELY

In addition to grouping actions, roles also provide separate connection pools, each

with permissions set to perform only the database transactions that are associated

with that role. This is a redundant level of security to help prevent a user's request

from performing any operation that they do not have authorization for.

When your application's business logic requires a connection to the database, you

can use WebADE to retrieve a connection for the associated WebADE action passing

in the requesting user. This will ensure that a database connection with the

appropriate permissions is retrieved. This can be done with code similar to the

following (replacing “myAction” with the name of the target action:

import ca.bc.gov.webade.Action;

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.WebADEUserPermissions;

...

ServletContext context = ...;

HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(context);

WebADEUserPermissions user = HttpRequestUtils.getCurrentUserPermissions(req);

Connection conn = app.getConnectionByAction(user, new Action(“myAction”));

2.5.1 RETRIEVING A DATABASE CONNECTION WITHOUT A USER-CONTEXT

There are situations that you may require a database connection, but do not have

a user to request for a connection on behalf of. For example:

- On application start-up, during initialization.

- In an automated process, running in the background of an application.

The Application singleton allows for these by a concept called “Priviledged

actions”. A priviledged action is a specially-marked WebADE action that can be

assigned to a role, allowing the developer to obtain that connections from that

role’s connection pool without passing the WebADE a user as context for the

request.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 16 of 36

To mark an action as priviledged, the entry in the WebADE ACTION database

table must have the PRIVILEGED_IND column value set to “Y”. By marking this

action as priviledged, the developer can use this action to call the Application

singleton’s method getConnectionByPriviledgedAction(). WebADE will check to

verify that this action is marked as priviledged, and then return a connection

from the associated role’s connection pool. If the given action is not marked as

priviledged in the database, the getConnectionByPriviledgedAction() method will

throw an exception.

NOTE: Priviledged actions should be used sparingly and only in the appropriate

circumstances, as they bypass a level of WebADE security. You may be asked by

the ministry, during migration, why your application is using priviledged actions,

and you must be able to provide valid reasons for doing so. Priviledged actions

should not normally be used during the process of an HTTP request, where there

is a user context that can be used to as context for a connection request.

NOTE: It is preferred that priviledged actions be mapped to WebADE Roles that

are only assigned priviledged actions, allowing the associated connection pool’s

database permissions to be restricted to only those permissions needed for the

execution of those priviledged actions.

2.6 PREFERENCES

The WebADE also provides access to WebADE Preferences. Preferences come in 5

types: Global, Application, WebADE, Extension, and User. (For more information

about Preferences, including the difference between the 5 types, see the WebADE 4

Administrator’s Guide)

A developer can access application, user, and global preferences through the

WebADE Application singleton.

NOTE: There are two APIs for preferences in the WebADE library. The Preferences,

PreferenceSet, and Preference classes have been deprecated in favour of the

WebADEPreferences, WebADEPreferenceSet, and WebADEPreference classes (located

in the ca.bc.gov.webade.preferences package). This was done to simplify the

preferences API, especially with the addition of the ability to save user preferences.

The older getGlobalPreferences(), getApplicationPreferences(), and

getUserPreferences() methods have been deprecated and replaced with

getWebADEGlobalPreferences(), getWebADEApplicationPreferences(), and

getWebADEUserPreferences() methods, which return the new WebADEPreferences

object. The older methods will still work, but the Preferences classes are now merely

wrappers around the WebADEPreferences classes. Existing applications can continue

to use the deprecated methods, but new applications should switch to the new

methods where possible.

2.6.1 THE WEBADEPREFERENCES INTERFACE

When fetching the application, user, or global preferences, the application

singleton will return a WebADEPreferences object. The WebADEPreferences

object contains the complete set of preferences (global, application, or user),

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 17 of 36

divided by preference sub-type, which are further divided into individual

preferences and preference sets.

PREFERENCES VS PREFERENCE SETS

Preferences can be divided into individual preferences and preferences grouped

together in a set. A preference in the database belongs in a preference set if the

PREFERENCE_SET_NAME column is not null.

All preferences with the same preference sub-type and set name will be added to

a WebADEPreferenceSet and stored in the WebADEPreferences object using the

preference sub-type as a hash table-type key. To obtain the preference set from

the WebADEPreferences object, call the WebADEPreferences class’

getPreferenceSet() method, passing in the preference sub-type and preference

set name as String objects. This method will return the WebADEPreferenceSet

object, or null if no set is defined for the given preference sub-type/preference

set name combination.

If a preference is defined without a preference set name, it will be stored

individually in the WebADEPreferences object using the preference sub-type as a

hash table-type key. To obtain the preference from the WebADEPreferences

object, call the WebADEPreferences class’ getPreference() method, passing in the

preference sub-type and preference name as String objects. This method will

return the WebADEPreference object, or null if no preference is defined for the

given preference sub-type/preference name combination.

2.6.2 THE WEBADEPREFERENCESET INTERFACE

A preference set is mainly a set of preferences, all of which have the same

preference set name. Preference sets are used to group like preferences, such as

the configuration preferences for a WebADE User Provider (e.g. the CAP Web

Services User Provider). To obtain a preference from the WebADEPreferenceSet

object, call the WebADEPreferenceSet class’ getPreference() method, passing in

the preference name as a String object. This method will return the

WebADEPreference object, or null if no preference is defined for the given

preference name.

2.6.3 THE WEBADEPREFERENCE INTERFACE

A WebADE preference comprises mostly of a preference name and value. The

getPreferenceName() method returns the name of the preference, while the

getPreferenceValue() method returns the preference value as a String.

2.6.4 THE MULTIVALUEWEBADEPREFERENCE INTERFACE

The MultiValueWebADEPreference interface is a sub-class of the

WebADEPreference interface, and supports multi-value preferences. Multi-value

preferences are defined as multiple rows in the PREFERENCE database tables with

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 18 of 36

the same preference type/sub-type/set name/preference name, but with different

preference values. If your application expects a preference to have multiple

values, you will need to check the WebADEPreference object that is returned

from the WebADEPreferences or WebADEPreferenceSet object using an

instanceof class check. For example:

WebADEPreference pref = prefs.getPreference(“test-sub-type”, “test-pref-name”);

if (pref instanceof MultiValueWebADEPreference) {

 MultiValueWebADEPreference multiPref = (MultiValueWebADEPreference)pref;

}

The MultiValueWebADEPreference object has a getPreferenceValues() that

returns the List of preference values for this preference.

2.6.5 APPLICATION PREFERENCES

Application preferences are preferences stored in the WebADE database with a

PREFERENCE_TYPE_CODE column value of “APP”. Application preferences are

application-specific, containing information such as a support contact email

address. To retrieve the set of application preferences for your application, use

the following code:

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.preferences.WebADEPreferences;

import ca.bc.gov.webade.http.HttpRequestUtils;

...

ServletContext context = ...;

HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(context);

WebADEPreferences preferences = app.getWebADEApplicationPreferences();

NOTE: The getApplicationPreferences() method will always reload the

preferences from the database. If you are frequently calling this method (One or

more times per request), you may want to cache these values in the session

context, to prevent excessive calls to the database.

2.6.6 USER PREFERENCES

User preferences are preferences stored in the WebADE database with a

PREFERENCE_TYPE_CODE column value of “USR”. User preferences are used to

store preferences that are user-specific for a WebADE application. To retrieve

the set of user preferences for a given user (In this example, the current user),

use the following code:

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.preferences.WebADEPreferences;

import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.WebADEUserPermissions;

...

ServletContext context = ...;

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 19 of 36

HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(context);

WebADEUserPermissions user = HttpRequestUtils.getCurrentUserPermissions(req);

WebADEPreferences preferences = app.getWebADEUserPreferences(user.getUserCredentials());

2.6.7 GLOBAL PREFERENCES

Global preferences are preferences stored in the WebADE database with a

PREFERENCE_TYPE_CODE column value of “GLB”. Global preferences are used to

store preferences that are not application-specific, such as a ministry website

URL. To retrieve the complete set of all global preferences, use the following

code:

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.preferences.WebADEPreferences;

import ca.bc.gov.webade.http.HttpRequestUtils;

...

ServletContext context = ...;

HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(context);

WebADEPreferences preferences = app.getWebADEGlobalPreferences();

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 20 of 36

3. WEB APPLICATIONS AND MVC DESIGN

Web applications developed with WebADE should be developed with the Model-View-Control

style of design, or MVC. MVC is considered the industry standard way of designing

applications. The purpose of MVC is to separate display logic from business logic, allowing

for clean design and ease of maintenance of the application once it has been delivered.

The current suggested framework for MVC for WebADE is Apache Struts, which is described

below. Regardless of which framework is used, the main concept of MVC, as it pertains to

web applications is that of using a controlling Servlet to handle all requests to a web

application. This means that every link and form in web pages that are part of the “View”

section of the application will send a request to the “Control” Servlet that controls the web

application.

When the “Control” Servlet receives a request, it passes it off to a “Model” component,

which then performs the business logic of the action related to the request. How a servlet

determines what “Model” component to pass the request off to is all based on information in

the request, and is dependant on the framework chosen to build an MVC web application.

Again, we describe how Struts implements this in the section below.

3.1 WEBADE AND MVC DESIGN

The best way to load the WebADE is to use a combination of a

ServletContextListener to load and initialize the WebADE at application startup, and a

Filter to intercept HTTP Requests to allow the WebADE to pre-processing the request,

setting the current user’s permissions and information in the session and other

internal WebADE processes. To do this, you need to add the following code to your

WEB-INF/web.xml file (in accordance with the web.xml DTD standards):

<context-param>

 <param-name>webade.application.acronym</param-name>

 <param-value>APP</param-value>

</context-param>

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 21 of 36

<filter>

 <filter-name>WebADE Filter</filter-name>

 <filter-class>ca.bc.gov.webade.j2ee.WebADEFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>WebADE Filter</filter-name>

 <servlet-name>action</servlet-name>

</filter-mapping>

<listener>

 <listener-class>ca.bc.gov.webade.j2ee.WebADEServletContextListener</listener-class>

</listener>

The context-param "webade.application.acronym" is required by the

WebADEServletContextListener to load the application singleton for you application.

Set the param-value to the application acronym of your application (The same value

as the APPLICATION_ACRONYM column value of your entry in the WebADE

APPLICATION table).

NOTE: If your are using Struts (See below), ensure your ActionServlet class

configuration DOES NOT contain a reference to the WebADEActionServlet

implemention. The WebADEActionServlet implementation is an older implementation

of the same functionality now provided by the ServletContextListener/Filter

implementation, and is not needed in this deployment strategy.

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

... More servlet tag config ...

</servlet>

3.1.1 USING CUSTOM SERVLETCONTEXTLISTENERS

If you wish to use custom J2EE ServletContextListeners for application logic at

startup and you require access to the WebADE application singleton or other

WebADE components, you must map your custom ServletContextListener in the

web.xml file using a listener tag set, but declared after the one for the

WebADEServletContextListener, like the example below.

<listener>

 <listener-class>ca.bc.gov.webade.j2ee.WebADEServletContextListener</listener-class>

</listener>

<listener>

 <listener-class>ca.bc.gov.custom.CustomServletContextListener</listener-class>

</listener>

3.1.2 USING CUSTOM FILTERS

If you wish to use custom J2EE Filters for application logic and you require access

to the requesting user’s WebADE permissions and/or information, you can

implement the following code in the doFilter() method in your Filter

implementation:

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 22 of 36

/**

 * @see javax.servlet.Filter#doFilter(javax.servlet.ServletRequest,

javax.servlet.ServletResponse, javax.servlet.FilterChain)

 */

public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws

IOException, ServletException {

 WebADEUserInfo user = HttpRequestUtils.getCurrentUserInfo(httpRequest);

 WebADECurrentUserPermissions user = HttpRequestUtils.getCurrentUserPermissions(httpRequest);

 ... more code here ...

 }

Also, when adding your filter and mapping to the web.xml file, remember to use

the same mapping as the WebADE Filter, but declare your mapping after the

<filter-mapping> tag for the WebADE Filter (The J2EE spec declares that filters

are called in order of appearance of their mappings in the web.xml file).

3.2 STRUTS

The purpose of the Apache Struts project is to provide a framework that implements

the MVC model of application design in standard a way that makes application code

clear and easy to read. It also adds functionality that makes implementing a web

application easier, with classes that handle form submissions, standard tag libraries

and a “Tiles” framework that aid in display logic, and an XML file-based configuration

that binds an application together, mapping user requests to model code, as well as

defining what JSPs a “Model” component will forward the user's web browser to,

depending on the result of the business logic operation.

The “Control” Servlet class in Struts is called ActionServlet. The ActionServlet will

receive all browser requests and forward these requests off to instances of the Struts

class “Action”. A developer will sub-class this Action class to perform the desired

operation of the application, interpreting the user's request and executing the

desired business logic.

NOTE: This should not be confused with WebADE actions. Although the concepts are

similar, and it is possible that each Struts Action could map one-to-one with a

WebADE action for authorization purposes.

The Struts framework has a lot of nuances, but the intent of this document is not to

be a Struts tutorial. For more information, see the Struts project website at:

http://struts.apache.org/

3.3 STRUTS AND THE WEBADE

NOTE: While this method of loading the WebADE is still valid, it is recommended

that new applications use the ServletContextListener/Filter implementation described

above. If you plan on using the WebADEActionServlet to load the WebADE, make

sure you do not include the WebADEServletContextListener/WebADEFilter references

in your web.xml tile, as described above.

WebADE integrates with Struts by extending the ActionServlet class with the

ca.bc.gov.webade.http.WebADEActionServlet. This WebADEActionServlet class

injects WebADE code into 3 points of the ActionServlet’s processing.

http://struts.apache.org/

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 23 of 36

1) On initialization of the servlet, WebADE also creates the WebADE database

connection pool and loads its configuration settings, WebADE extensions, and

application-specific connection pools for use in the web application.

2) Also on initialization, the WebADEActionServlet provides an init() method that

can be overridden by the developer to provide application-specific

initialization at this time.

3) On receiving a user’s request, WebADE will initialize the user’s session and

check for any organization selection and user agreements that need to be

performed before hading the request to the application’s request-processing

code (in the form of custom Struts Actions.

If you wish to use the WebADEActionServlet to load the WebADE, you are required to

extend the WebADEActionServlet class with your own, application-specific

implementation and implement the getApplicationCode() method, returning the

application acronym of your application (The same value as the

APPLICATION_ACRONYM column value of your entry in the WebADE APPLICATION

table).

Then, in your web.xml file, you will need to declare your custom servlet as the Struts

controller servlet for your application. Below is an example of a proper mapping:

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>com.example.MyWebADEActionServlet</servlet-class>

... More servlet tag config ...

</servlet>

3.3.1 THE WEBADEACTION CLASS

Usually, a Struts developer will extend the org.apache.struts.Action class to

create their application’s actions. However, you may wish to extend the

ca.bc.gov.webade.http.WebADEAction class instead. The WebADEAction simply

provides a couple helper methods to obtain the ServletContext and Application

singleton directly, giving a little streamlining to WebADE development. Extending

the WebADEAction class is not necessary for a J2EE application to be WebADE

compliant.

3.4 MORE INFORMATION

Please see the Apache Struts website for more information about configuring and

using Struts.

http://struts.apache.org/

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 24 of 36

4. WEB APPLICATION INITIALIZATION

As any web application has many resources that need to be initialized before the application

can handle user requests, such as connection pools, resource files, or even autonomous

processes, a certain amount of processing must occur at the point the application is started

inside the web container. This section gives details about this initialization, as well as the

overall configuration and administration of a WebADE application.

4.1 CONFIGURING THE WEBADE

Most of the WebADE's settings are configured in the WebADE database. This allows

for security of configuration settings, restricting access to these settings to database

administrators, and a separation of the configuration from the compiled application

WAR or EAR file, allowing settings to change in the application without the need to

redeploy.

Of course, the primary difficulty with using a database is that WebADE needs to be

made aware of how to connect to that database. This is achieved by creating a

compiled Java library of a properly configured WebADEConnection class. For

information on configuring and creating this library, see the WebADE 4

Administrator's Guide.

4.2 WHAT THE WEBADE DOES AT STARTUP

When the WebADE is loaded at web application initialization by the controlling

Servlet, it performs the following initialization steps.

1) WebADE loads the WebADE database connection settings from the

WebADEConnection jar, creating a connection pool for this database, to be used

internally.

2) WebADE connects to the WebADE database, loading the application's role and

action settings.

3) For each role, WebADE creates a connection pool, using the connection pool

settings stored in the WebADE database. If a role does not require a WebADE

connection pool (No connection pool settings are in the WebADE database for this

role), this step is skipped.

4) WebADE loads the LDAP configuration settings for all domains supported by the

web application. Connections to LDAP are used to load user information for all

users of the application, excluding authorization information.

5) WebADE loads any WebADE extensions configured for the application, storing a

reference to them in the Application singleton.

4.3 ADAM

ADAM is the web application that is used to manage user access to WebADE

applications. As a WebADE database is used to manage any number of web

applications, ADAM is used to manage the authorizations for these users for all

applications installed in a given WebADE database.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 25 of 36

ADAM provides two main advantages; centralized, consistent method of granting

users to applications, regardless or the differences in applications, and a distributed

management of these authorizations. ADAM allows top-level administrators to

delegate applications the management of user authorizations for a defined set of

users, such as all ministry workers or a private company, to another individual. This

delegation restricts that individual to only be able to administrate a subset of users,

and only for the application roles that the top-level administrator authorizes the

individual for.

It should be noted that ADAM is a very complex application, and a much more

thorough explanation can be found in the ADAM User's Guide.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 26 of 36

5. WEBADE AND MANAGEMENT OF A USER’S SESSION

When a user connects to a WebADE web application, WebADE must manage a certain

amount of information about the user and associate it with the user’s session. At the

creation of a new session, WebADE loads the user’s personal information, such as name,

user id, and email address and makes this available to the web application for use in any

business logic that may require it. Also at session creation, the WebADE performs two

optional operations; organization selection and user agreements.

5.1 ORGANIZATION SELECTION

As an option, while configuring your WebADE application’s authorizations in ADAM,

you can set it up so that when users are granted access to a role, it is done on behalf

of an organization. This means that, when the user creates a session with the web

application, they do so on behalf of an organization. The primary advantage of doing

this is to allow a user to have varying levels of authorization on an organization-by-

organization basis.

For example, user John Doe could have “User” access to an application on behalf of

company ABC, but he could be granted “Administrator” access to an application on

behalf of company XYZ. When John logs into the web application, he will be

presented with a list of all organizations that he has been granted access to the

application on behalf of. When he selects one of the organizations from the list, he

will be restricted in access to the application to only the authorizations granted to

him on behalf of the selected organization.

Granting a user authorization on behalf of an organization can be done using ADAM.

Please see the ADAM User’s Guide for more information.

5.1.1 CONFIGURING ORGANIZATION SELECTION FOR AN APPLICATION

When a WebADE application secures some or all of its roles by organization, it is

often desirable to have the WebADE application require users to select one of the

organizations that they have been authorized access to the application on behalf

of, at the creation of a new web session with the application.

To enable organization selection for a WebADE web application, you will need to

add and configure the Organization Selection Filter in your application’s web.xml

file.

NOTE: When adding the Organization Selection Filter to your application, you

should add a filter-mapping for this filter matching each WebADE Filter filter-

mapping configured in your application. When adding the filter-mappings make

sure that the Organization Selection Filter filter-mapping is added after the

matching WebADE Filter filter-mapping, as the Organization Selection Filter

expects the WebADE Filter to have already handled the request.

See the example below for a basic configuration of the Organization Selection

Filter:

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 27 of 36

<filter>

 <filter-name>WebADE Filter</filter-name>

 <filter-class>ca.bc.gov.webade.j2ee.WebADEFilter</filter-class>

</filter>

<filter>

 <filter-name>Organization Selection Filter</filter-name>

 <filter-class>ca.bc.gov.webade.j2ee.OrganizationSelectionFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>WebADE Filter</filter-name>

 <servlet-name>action</servlet-name>

</filter-mapping>

<filter-mapping>

 <filter-name>Organization Selection Filter</filter-name>

 <servlet-name>action</servlet-name>

</filter-mapping>

<servlet>

 <servlet-name>action</servlet-name>

 <display-name>Struts Action Servlet</display-name>

 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

</servlet>

If this filter is added to your application, when a user logs in, they will be

presented with an organization-selected page, instructing them to select one of

the organizations on behalf of which they have application authorizations, to use

as their selected organization for the current web session. Once they select an

organization, they will only have access to the application functionality specific to

the application roles granted to them on behalf of the given organization.

NOTE: If a user checks the "Set as Default" flag on the organization-selected

page when choosing an organization, that organization will be highlighted in the

organization drop-down list by default any time in the future that a user logs in to

the application and is presented the organization-selected page. This is called

the user's default organization.

NOTE: If a user only has application roles granted on behalf of one organization,

this organization will automatically be set as the selected organization, and they

will not be prompted by the organization-selected page.

SELECT-BY-ORGANIZATION-TYPE SETTING

If you want to have the Organization Selection Filter only allow the user to select

their session organization from government organizations or only from non-

government organizations, add an init-param to the filter declaration with a

param-name of “webade.default.organization.select.by.organization.type” and a

param-value of “government” for government organization only selection or

“non-government” for non-government organization only selection. For example:

<filter>

 <filter-name>Organization Selection Filter</filter-name>

 <filter-class>ca.bc.gov.webade.j2ee.OrganizationSelectionFilter</filter-class>

 <init-param>

 <param-name>webade.default.organization.select.by.organization.type</param-name>

 <param-value>non-government</param-value>

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 28 of 36

 </init-param>

</filter>

USE-DEFAULT-ORGANIZATION SETTING

If you wish to have the user's default organization (see above) selected

automatically (thus bypassing the organization-selection page completely) when

the user logs in to your application, add an init-param to the filter declaration

with a param-name of “webade.use.default.organization.enabled” and a param-

value of “true”. For example:

<filter>

 <filter-name>Organization Selection Filter</filter-name>

 <filter-class>ca.bc.gov.webade.j2ee.OrganizationSelectionFilter</filter-class>

 <init-param>

 <param-name>webade.use.default.organization.enabled</param-name>

 <param-value>false</param-value>

 </init-param>

</filter>

CUSTOM DEFAULT-ORGANIZATION-SWITCH-PAGE SETTING

If you wish to use a custom organization-selection page, add an init-param to the

filter declaration with a param-name of

“webade.default.organization.switch.page” and a param-value set to the path,

relative to the root of the application, for the custom organization selection JSP.

For example:

<filter>

 <filter-name>Organization Selection Filter</filter-name>

 <filter-class>ca.bc.gov.webade.j2ee.OrganizationSelectionFilter</filter-class>

 <init-param>

 <param-name>webade.default.organization.switch.page</param-name>

 <param-value>test.jsp</param-value>

 </init-param>

</filter>

5.2 USER AGREEMENTS

Another optional component is the ability to present the user with a user agreement.

User agreements are documents that a user must agree to before gaining access to

the application. If your application has any agreements set when a user logs in that

the user has not agreed to, they will be presented with the agreement and required

to agree to it before accessing the application.

ADAM does not provide the ability to assign user agreements to an application. This

must be done via preferences at this time. Please see the ADAM Administrator’s

Guide for more information.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 29 of 36

6. ADVANCED TOPICS

The following topics are considered more “advanced”, and it is possible for a WebADE

application to be developed without using any of this functionality. If this is your first

WebADE application, we would recommend you start developing using what you have

learned so far, returning to this section once you feel comfortable with the core WebADE

API.

6.1 DATABASE CONNECTIONS AND CONNECTION POOLS

WebADE provides a robust connection pool API based on the

javax.sql.PooledConnection specification. WebADE connection pools have the

advantages of being very configurable, self-monitoring, and provide extensive

logging for debugging purposes.

WebADE connection pools will even self-close connections, statements, and result

sets that a developer forgets to close before the object leaves scope, providing

helpful logging for the developer to help detect such situations so they can be

cleaned up in the development process. As issues like these can easily make it into

a production environment without notice, these measures greatly reduce

administrative problems that arise when an application is deployed.

For more information on WebADE connection pools, please see the WebADE

Connection Pooling Guide.

6.2 WEBADE EXTENSIONS

WebADE allows extensions to be created and registered with the core WebADE at

runtime. A registered extension has access to the WebADE database connection, as

well as a reference to the Application singleton.

6.2.1 CREATING A WEBADE EXTENSION

To create a new WebADE extension, create a new class, extending the ca.bc.gov.

webade.WebADEExtension class. Please note that extensions of this base class

are intended to be singleton objects, so your code should be developed with this

in mind.

Your extension singleton class must have a public default constructor. This

constructor is called during the start-up of the web application on the server,

when extensions are registered with the application singleton.

6.2.2 REGISTERING A WEBADE EXTENSION

In order to register a WebADE extension with the application singleton, it needs

to be configured with a valid set of preferences stored in the WebADE

PREFERENCES table. A WebADE extension requires the creation of two types of

preferences; extension and application. This section assumes the reader is

familiar with WebADE preferences and understands how to create WebADE

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 30 of 36

preferences of all types. For a detailed explanation of WebADE preferences,

please see the WebADE Administrator’s Guide.

EXTENSION PREFERENCES

WebADE extension-type preferences are used exclusively to initialize WebADE

extensions. A WebADE extension uses these preferences to initialize itself at

application start-up.

A WebADE extension can have any number of preferences and preference sets,

and naming for these are up to the extension developer. There are only three

mandatory rules that must be followed:

1) All extension preferences must have a PREFERENCE_TYPE value of “EXT”.

2) All extension preferences for the same extension must share the same

“preference sub-type” name. This name should be the extension’s name

(such as “reporting” or “services”) in lowercase letters.

3) There must be a preference defined for the extension with a null

preference set name, a preference name of “extension-class-name”, and a

value of the fully-qualified class name of the class that extends the

ca.bc.gov.webade.WebADEExtension abstract class (Example:

“ca.bc.gov.webade.myextension.MyExtension”).

4) There must be a preference defined for the extension with a null

preference set name, a preference name of “enabled”, and a value of

either “true” or “false”. With a value of “true”, the extension will be

loaded by the WebADE at startup. With a value of “false”, the extension

will be ignored at startup.

OTHER EXTENSION REGISTRATION NOTES

When an extension is registered with the application class, it is handed a

reference to the application object, which can be accessed by the getApplication()

method in the WebADEExtension class.

Connections to the WebADE database can be obtained by calling the

getADEConnection() method. Please note that connections obtained this way

should be closed by calling the releaseADEConnection() method, instead of calling

the Connection.close() method.

EXISTING WEBADE EXTENSIONS AND THE NEW PREFERENCES API

For existing WebADE Extensions (Compiled against a WebADE release before

version 04_01_08) to be successfully built against the current WebADE API, they

will need code change, extending the WebADEExtension abstract method

“init(ca.bc.gov.webade.preferences.WebADEPreferences)”. This method should

be used instead of the now deprecated “init(ca.bc.gov.webade.Preferences)”

method to initialize the extension. See the section on the WebADEPreferences

API in this document for information on how to use this new API.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 31 of 36

NOTE: Existing WebADE Extension binaries do not require code change to be

used in WebADE applications using the current release of the WebADE. Only new

releases of existing WebADE Extensions require this change.

6.3 SEARCHING

It is sometimes necessary for a WebADE application to perform searches of users

and organizations. Searching for each type is similar in implementation, but is

flexible enough to allow for different data sources within the same WebADE system.

As each WebADE environment is unique, searching for user and organization data

within the WebADE can vary slightly from system to system. For instance, in one

system, user’s email addresses may not be supported, and so searching for them

would not produce any results. In another system, it may not be possible to search

by first name or last name. Fortunately, WebADE’s searching functionality allows for

developers to determine at runtime the available searchable attributes for users and

organizations, allowing for flexibility without code change.

6.3.1 SEARCH OBJECTS AND SEARCH ATTRIBUTES

Searching for users and organizations both involve populating the appropriate

Search Object’s Search Attributes, and submitting this search object to WebADE.

SEARCH OBJECTS

A Search Object is a metadata object that defines the searchable attributes for

the target data type (WebADEUserInfo or Organization), including the attribute’s

type, allowable values, supported flag, and other options, like optional indicator

and wildcard search settings.

Each attribute of a Search Object will be represented by a class that extends the

SearchAttribute abstract class. This class has one property, the “supported” flag.

This flag is set for the specific WebADE environment, and indicates whether this

attribute can be used for searching in that particular WebADE instance. The

subclasses of SearchAttribute are described below.

TEXTSEARCHATTRIBUTE

This attribute class defines a field that is searchable by any text pattern. This

means that there is very little validation that can be performed. This searchable

field would be presented to the user as an editable text field.

The TextSearchAttribute has two additional properties: searchValue and

wildcardOption. The searchValue should be set to whatever value the user typed

in the text field. The wildcardOption should be set to one of:

WildcardOptions.EXACT_MATCH, WildcardOptions.WILDCARD_LEFT,

WildcardOptions.WILDCARD_RIGHT, or WildcardOptions.WILDCARD_BOTH.

 EXACT_MATCH means to search for values that match exactly what the

user typed.

 WILDCARD_LEFT means to search for values that end with the value the

user typed.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 32 of 36

 WILDCARD_RIGHT means to search for values that start with the value

the user typed.

 WILDCARD_BOTH means to search for values that contain the value the

user typed.

OPTIONSEARCHATTRIBUTE

This attribute defines a field that is searchable only by a fixed range of values.

This searchable field would be presented to the user as a dropdown list.

The OptionSearchAttribute has three additional properties: searchValue,

searchOptions, and optional flag. The searchValue should be set to whatever

value the user selected from the dropdown list. The searchOptions are the values

to be used to populate that list, and the optional flag indicates whether the user

must select a search value for this attribute.

DATESEARCHATTRIBUTE

This attribute defines a date field that allows a user to search for a specific date.

This attribute has three properties: maxStartDate, maxEndDate, and searchDate.

The maxStartDate and maxEndDate define the earliest and latest valid search

date the user can enter, while the searchDate is to be set to the date the user

entered.

6.3.2 ORGANIZATION SEARCHING

Searching for organizations is performed in three steps: retrieving an

OrganizationSearchObject instance, populating the search object with details of

the search, submitting the search object to WebADE and iterating the search

results.

RETRIEVING AN ORGANIZATIONSEARCHOBJECT INSTANCE

To obtain a properly configured OrganizationSearchObject from WebADE, call the

ca.bc.gov.webade.Application method “getOrganizationSearchMetadata()”. This

method returns an OrganizationSearchObject instance that is properly configured

for WebADE organization searching within the specific WebADE instance.

POPULATING THE SEARCH OBJECT

Organizations, by default, allow for searching by organization name and type

code. The OrganizationSearchObject has two search attributes; name and

organizationTypeCode. The name attribute is a TextSearchAttribute, as

described above, while the organizationTypeCode, is an OptionSearchAttribute.

SUBMITTING THE QUERY TO WEBADE AND RETRIEVING THE RESULTS

Once you have populated the Search Object with the desired search criteria, pass

this Search Object back to the WebADE, by calling the Application’s

findOrganizations() method. This method will return a List of matching

Organization objects, which you can then iterate over.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 33 of 36

6.3.3 USER SEARCHING

Searching for users is similar to organization searching, with the exception that,

instead of one Search Object, there is one search object for each source directory

supported by this WebADE installation. Examples of source directories would be

the IDIR and BCeID domains.

RETRIEVING THE USERSEARCHOBJECT INSTANCES

To obtain the set of properly configured UserSearchObject instances from

WebADE, call the ca.bc.gov.webade.Application method “getUserSearchMetadata

()”. This method returns a List of UserSearchObject instances that is properly

configured for WebADE user searching within the specific WebADE instance.

POPULATING THE SEARCH OBJECT

First you must iterate over the list of UserSearchObjects, calling the

getSearchDirectory() method and comparing the value with the target domain

you wish to seach for users in. The UserSearchObject has many search

attributes, including user id, first name, last name, phone number, email, middle

initial, and GUID. Not all attributes are supported for all source directories, so

you will have to call the isSupported() method at runtime on each attribute to

determine if it can be used for your search.

SUBMITTING THE QUERY TO WEBADE AND RETRIEVING THE RESULTS

Once you have populated the Search Object with the desired search criteria, pass

this Search Object back to the WebADE, by calling the Application’s

findWebADEUsers() method. This method will return an array of matching

WebADEUserInfo objects, which you can then iterate over.

NOTE: When searching for users in a WebADE database application, users are

located by directly querying the user-provider (ex: CAP web-services), and

entries in the WebADE database user table are ignored. If a user is not in the

user table, the findWebADEUsers() method will not make an entry for them. To

ensure that a target user is in the WebADE database user table, you must call the

Application’s getWebADEUserInfo() method after the user search.

6.4 MANAGING USER PREFERENCES

A WebADE application can manage user preferences (edit, add, and delete) for

each user of that application. This allows a developer to customize the

application for each user triggered by runtime actions like user-input.

To manage a user’s preferences, you must first obtain the user’s WebADE User

Preferences from the WebADE application singleton (See User Preferences).

EDITING A PREFERENCE

To edit an existing preference, first retrieve the desired preference from the

user's WebADEPreferences object. If the preference is in a preference set, use

the getWebADEPreferenceSet() method to retrieve the preference set, and then

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 34 of 36

call the getWebADEPreference() method on this preference set to get the desired

WebADEPreference. If the preference is not in a set, retrieve the desired

preference from the user's WebADEPreferences object, using the

getWebADEPreference() method. After you have the WebADEPreference object,

set the preference value to the desired value using the object's

setPreferenceValue() method.

ADDING A NON-PREFERENCE-SET PREFERENCE

To add a brand new preference to a user's preferences, first, create a new

WebADEPreference using the DefaultWebADEPreference concrete class (also in

the ca.bc.gov.webade.preferences package), passing in the preference name as a

parameter to the constructor. Before adding the preference to the user's

WebADEPreferences instance, you must set the preference value using the

setPreferenceValue() method. Then, call the addPreference() method on the

WebADEPreferences object, passing in the preference sub-type as a String (all

preferences must have a sub-type), and the WebADEPreference object as the

new preference.

ADDING A PREFERENCE-SET PREFERENCE

To add a brand new preference to an existing preference set in a user's

preferences, fetch the desired preference set from the user's WebADEPreferences

object, using the getWebADEPreferenceSet() method, passing in the preference

set's preference sub-type and preference set name. Then, create a new

WebADEPreference using the DefaultWebADEPreference concrete class (also in

the ca.bc.gov.webade.preferences package), passing in the preference name as a

parameter to the constructor. Before adding the preference to the preference

set, you must set the preference value, using the setPreferenceValue() method.

Then, call the addPreference() method on the WebADEPreferenceSet object,

passing in the WebADEPreference object as the new preference.

DELETING A NON-PREFERENCE-SET PREFERENCE

To delete a preference that is not in a WebADEPreferenceSet, call the

WebADEPreferences instance’s removePreference() method, passing in the

preference sub-type and preference name as Strings.

DELETING A PREFERENCE-SET PREFERENCE

To delete a preference that is in a WebADEPreferenceSet, call the

WebADEPreferenceSet instance’s removePreference() method, passing in the

preference sub-type and preference name as Strings.

SAVING THE USER’S PREFERENCE

After you have finished modifying a user's preferences, you must save them back

to the database, using the WebADE Application singleton method

saveWebADEUserPreferences(), passing in the user's credentials and the modified

WebADEUserPreferences object. WebADE will save the user's preferences back

to the database.

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 35 of 36

NOTE: You may not edit or add a multi-value user preference using this API.

Doing so will result in a WebADEException when trying to save these preferences

to the database.

6.5 ALLOWING BCEID USERS TO VIEW AN IDIR USER EMAIL

ADDRESS

The CAP web services do not currently allow a BCeID user logged in to a WebADE

application to view IDIR users’ email address. However, certain applications require

this email address for application functionality.

WebADE has a setting that will allow this CAP web services to be overridden, using

the email address from the WebADE database and returning it to the user. To turn

this functionality on, you will need to add the following WebADE preference to the

CAP web services user provider (“bceid-web-services-provider”) by adding it in the

PREFERENCE table of the WebADE database:

COLUMN NAME COLUMN VALUE

PREFERENCE_ID preference_seq.NEXTVAL

PREFERENCE_TYPE_CODE “WDE”

PREFERENCE_SUB_TYPE “user-provider”

APPLICATION_ACRONYM “your-application-acronym”

PREFERENCE_SET_NAME “bceid-web-services-provider”

PREFERENCE_NAME “load-idir-email-address-for-bceid-users”

PREFERENCE_VALUE “true”

BC Provincial Government WebADE 4.3.0 User’s Guide

Page 36 of 36

7. RELATED DOCUMENTATION AND LINKS

WebADE 4 – Administrator’s Guide http://www.webade.org/

WebADE 4 - Connection Pooling Guide http://www.webade.org/

WebADE 4 – What’s New http://www.webade.org/

Javasoft Website http://java.sun.com/

Struts Project Website http://struts.apache.org/

ADAM User’s Guide http://www.webade.org/

http://struts.apache.org/

